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A theory is developed to describe the evolution of the entrainment interface in 
turbulent flow, in which the surface is convoluted by the large-scale eddies of the 
motion and at  the same time advances relative to the fluid as a result of the 
micro-scale entrainment process. A pseudo-Lagrangian description of the process 
indicates that the interface is characterized by the appearance of ‘billows’ of 
negative curvature, over which surface area is, on average, being generated, 
separated by re-entrant wedges (lines of very large positive curvature) where 
surface area is consumed. An alternative Eulerian description allows calculation 
of the development of the interfacial configuration when the velocity field is 
prescribed. Several examples are considered in which the prescribed velocity 
field in the z direction is of the general form w = Wf(x - Ut), where the maximum 
value of the function f is unity. These indicate the importance of leading points 
on the surface which are such that small disturbances in the vicinity will move 
away from the point in all directions. The necessary and sufficient condition for 
the existence of one or more leading points on the surface is that U < V ,  the 
speed of advance of an element of the surface relative to the fluid element at  the 
same point. The existence of leading points is accompanied by the appearance of 
line discontinuities in the surface slope re-entrant wedges, In  these circum- 
stances, the overall speed of advance of the convoluted surface is found to be 
W + ( V 2  - U2)9, where W is the maximum outwards velocity in the region; this 
result is independent of the distribution f. 

When the speed U with which an ‘eddy’ moves relative to the outside fluid is 
greater than the speed of advance V of an element of the front, the interface 
develops neither leading points nor discontinuities in slope; the amplitude of the 
surface convolutions and the overall entrainment speed are both reduced greatly. 
In  a turbulent flow, therefore, the large-scale motions influencing entrainment are 
primarily those that move slowly relative to the outside fluid (with relative speed 
less than V ) .  The experimental results of Kovasznay, Kibens & Blackwelder 
(1970) are reviewed in the light of these conclusions. It appears that in their 
experiments the entrainment speed V is of the order fifteen times the Kolmogorov 
velocity, the large constant of proportionality being apparently the result of 
augmentation by micro-convolutions of the interface associated with small and 
meso-scale eddies of the turbulence. 
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1. Introduction 
For many years, it has been known that in free turbulent flows such as jets, 

wakes and boundary layers, there is a sharp but convoluted interface between the 
region where the flow is turbulent and the external region of irrotational motion. 
Early experiments by Corrsin (1943) and Townsend (1948) showed that the 
signals from a hot wire probe placed near the outer edge of such a flow are of two 
distinct types, one indicating slow and smoothly varying velocity fluctuations 
indispersed among sections where the velocity fluctuates much more rapidly as 
turbulent billows are swept past the probe. The fraction of the total time that the 
signal is ‘turbulent ’ is called the intermittency factor y ; as a result of the large- 
scale random convolutions of the interface, y varies smoothly from unity well 
inside the flow to zero well outside. 

More extensive studies were published by Corrsin & Kistler (1955). They 
pointed out that in a fluid of constant density, vorticity can be acquired by a 
fluid element outside the turbulent interface in the first place only by viscous 
diffusion of vorticity, but that once such an element has some vorticity, this can 
be amplified by the straining induced by the neighbouring turbulence. In  time, 
the root-mean-square vorticity of such fluid elements becomes comparable with 
that of the turbulence itself, and their incorporation into the turbulence is then 
complete. Corrsin & Kistler argued that the thickness of the ‘interface’ and the 
rate of advance of an element of area are both governed by the balance between 
the viscous diffusion of vorticity and the mean-square rate of straining induced by 
the turbulence. The former is determined by the molecular viscosity v itself, while 
the latter is proportional to (s, /v) ,  where eo is the rate of energy dissipation in the 
turbulence near the interface. The thickness of the ‘interface’ is then, on simi- 
larity grounds, necessarily proportional to the Kolmogorov microscale ( u3/s0)3 
and the speed of advance u, to the Kolmogorov velocity scale u, = (eo v)*. 

However, it  is well known that the mean position of theinterface (characterized 
by the point y = 0.5, say) advances towards the non-turbulent region with a 
speed u, that may be more characteristic of the velocities of the energy-containing 
eddies of the motion than is u,. Indeed, were this not so, self-preservation of mean 
properties of flows such as jets would not be possible. The mean rate of incorpora- 
tion of non-turbulent fluid per unit projected area can be expressed either as zc,, 
or as u, times the mean interfacial area per unit projected area. If the position 
of the interface is specified by the possibly multiple valued function z = C(x, y, t ) ,  

but it was not clear, to this writer at least, how the interfacial convolutions 
adjusted themselves to preserve this equality. 

A rather different view has also been suggested from time to time. It is that 
volumes of fluid, initially outside the turbulent region, are sporadically engulfed 
by the turbulence to be digested at  leisure by the same processes of viscous 
diffusion of vorticity and amplification by straining. If this were so, part of the 
entrainment interface would be internal to the turbulence and detached from the 
external front; the mean area per unit projected area of the external interface 



The entrainment interface 99 

would be less than if the interface were continuous, It is difficult either to confirm 
or deny this view by observation: measurements in a plane normal to the mean 
interface that show apparently isolated patches of irrotational motion may 
simply represent a section through a tongue of fluid not yet turbulent but not 
detached from the main volume. 

This view of entrainment is an extreme one and possibly rather implausible 
from a dynamical point of view. The analysis in later sections of this paper points 
strongly to an intermediate description in which the entrainment is augmented 
by micro-convolutions of the interface on scales of the same order as the inter- 
face thickness itself. This enhancement of the rate of advance of an element of 
area of the interface implies that the mean-square slope of the surface, when 
observed on a large scale, is much less than would be required by (I. l), in which u, 
is identified with the Kolmogorov microscale. 

Recently, the structure of the entrainment interface was the subject of two h e  
experimental studies, by Kovasznay, Kibens & Blackwelder (1 970) and by 
Kaplan & Laufer (1968). The measurements included the mean velocity dis- 
tributions in which averages were taken separately over intervals in which the 
fluid motion at a fixed point waseither turbulent or non-turbulent, thespace-time 
history of the turbulent bulges and the characteristic large-scale velocity dis- 
tributions associated with the bulges. One important finding of Kovasznay et al. 
was that the velocity appears to be continuous across the entrainment interface. 
This seems to exclude yet another suggestion concerning the detailed mechanics 
of entrainment that near-discontinuities in tangential velocity might arise, 
leading to sporadic local instability and breakdown. No doubt something of the 
kind does take place in stratified fluids when buoyancy differences associated 
with a sharp change in density across the interface render it essentially flat: 
the experiments of Thorpe (1969) attest to this. In  a homogeneous fluid, however, 
the absence of a vortex sheet or even of a particularly sharp velocity gradient 
in the experiments of Kovasznay et al. suggests that sporadic instability is not 
a significant contributor to turbulent entrainment. 

If we accept the view that entrainment is the result of vorticity diffusion by 
viscosity, subsequent amplification by straining augmented by micro-scale con- 
volutions of the interface, and all processes associatedwith the smallest scales of 
motion, then it follows that the detailed mechanics of entrainment are statisti- 
cally independent of the large-scale motions that convolute the surface. This 
idea of the statistical independence of large and small-scale motionsis at  the heart 
of the theory of local similarity in turbulence; in considering turbulent entrain- 
ment, it enables us to specify separately the velocity of advance of the interface 
and the large-scale motions deforming it. Convenient and familiar though the 
idea may be, it is important to recognize that it may not be correct in this parti- 
cular context. The small-scale motion near the edge of the entrainment interface 
is hardly a random sampling of the small-scale structure in the turbulence as a 
whole, and it would not be surprising to find that systematic variations in the 
small structure were associated with the large structure convoluting the surface. 
For example, small-scale eddies near the crest of a billow may be different from 
those in a trough. Nevertheless, at  this stage, it seems wisest simply to parametrize 
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the encroachment associated with the small-scale structure by a single velocity V ,  
independent of the larger-scale motion, and to explore the consequences of this 
model before adding additional complexity. 

It might be noted that the kinematics of a deforming, advancing turbulent 
entrainment interface arevery similar to those of a turbulent flame front, which has 
been the subject of an independent study by I. Howells (private communication). 

2. A pseudo-Lagrangian description 
Although the entrainment interface has a thickness of the order of the Kolmo- 

gorov microscale (v3/eO)4, this thickness is very small compared with the length 
scale of the energy-containing eddies convoluting the interface, provided the 
Reynolds number of the turbulent flow as a whole is sufficiently large. It is 
therefore convenient to represent the interface as a geometrical surface that is 
convoluted by the random velocity field induced by the large eddies of the 
turbulence, which a t  the same time advances normal to itself with speed u, = V 
into the region of irrotational motion. 

Suppose r(x, t )  represents the position vector of a point on the interface and 
moving with it, the instantaneous location at  time t = 0 being r(x, 0 )  = x. The 
velocity of the entrainment interface is 

where n is the unit normal to the surface away from the turbulent region. A 
neighbouring point on the interface, situated at  x + 1, moves with velocity 

d 
-r(x at + 1) = u(x + 1) + Vn(x + I),  

= u(X)+l.Vu(x)+ Vn(x)+ Vl.Vn(x)+ ..., 
so that the rate of change of the line element 1 is 

= l.Vu+ V1.Vn. 

dli aui an. - = 1.- + VE 2- 
dt  jaxj *axj 

In the notation of Cartesian tensors, 

When (2.3) is contracted with lit it follows that 

dli d d l  
l i -  - - &12 = 1- at 

and, if vi = l J l  is a unit vector in the direction of the line element in the interfacial 
surface, then 

aui 
- vivj- -LV ,  

1 at axj 
1 a1 _ _  - 
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avi an, 
ax, a 3 axj’ where, by definition, 

since ni vi = 0. 

L = nivj-  = --v.v.- 

The quantity L is one of the fundamental magnitudes of second order in the 
differential geometry of surfaces (Weatherburn 1955). If v’ is a unit vector in the 
surface normal to both v and n at time t = 0,  directed so that n = v x v’, then a 
second such magnitude is 

(2 .6)  
av; an, 

N = n,viz, = -v!v!- a QX,’ 

since also ndvl = 0. Further, if dl, dl’ are elements of length in the directions of 
v, v’, since v, = ari/al, 

and it follows that the quantity 

As the surface is distorted, the unit vectors v and v’ will not remain perpendicular, 
but at the initial instant we have the fundamental magnitudes of the first order, 

at  t = 0, in Weatherburn’s notation. Finally, two convenient relations follow 
from the fact that the spatial rate of change of the unit normal is perpendicular to 
itself, and so in the plane of v and v‘ 

an, v!- - - - V( M - v;N, 
axj 

ani 
v.- = -v;M-v,L.  

3 axj 

(2.9) 

With these expressions from differential geometry, the time rates:of change of 
the unit vectors can be found simply. Since id = lv,, 

1 - = - -  d V i  dli dl 
at at vw 

and, from (2.3) and (2.4)) 

au . 

8% 
= vk(h’tj - vivj)- - v;MV,  

from (2.9). Similarly, 
av; -- 
dt 

(2.10) 

(2.11) 
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These relations can be expressed alternatively as 

(2.12) 

The time rate of change of the unit normal n = v x v’ to the surface is given by 

after simple calculation. 

(2.13) 

The rate of change of area of an element of the moving interface can now be 

nA = l x l ’ ,  A = n . l x l ’  found readily. Since 

and 
dA dn dl dl‘ - = - . l x l ’ + n . - x l ’ + n . l x - ,  
d t  dt  at dt  

and, from (2.3) and (2.13)) it follows, after some re-arrangement, that 

au 
A dt ax, 

- ( v l v z + v ) . v ’ ) ~ ’ -  V J ,  
1 dA -- - (2.14) 

where, since 1 and 1’ are perpendicular at  the instant concerned, the mean 

J = L + N .  (2.15) 
curvature 

The &st term on the right of (2.14) represents the net rate of surface divergence 
of the fluid elements that instantaneously lie in the entrainment interface, a 
quantity that can be represented by 8, so that 

- e- V J ,  
1 dA 
A dt 
-- - (2.16) 

In  this form, the expression is independent of our choice of directions for the unit 
vectors v and v’, and holds throughout the history of the element of interfacial 
surface. 

When J < 0 (i.e. when a ‘billow’ of the turbulence extends into the irrotational 
fluid), the advance of the interface contributes to the generation of surface 
area. Moreover, in such regions the surface divergence of fluid elements would be 
expected to be positive, the fluid moving outwards generally from the top of the 
billow. Consequently, we are led to the general statement that outward billows 
of turbulence are, on average, sources of area of the entrainment interface. On the 
other hand, if J is sufficiently positive regardless of the local value of 8, d A / d t  < 0 
and surface area of the entrainment interface is destroyed. This corresponds 
geometrically to regions in ‘valleys’ between the turbulent hummocks; these 
regions tend to be sinks of surface area. It is clear, even at  this stage, that the 
kinematics of the entrainment interface depend heavily on the local surface 
curvature, whose development will be considered in detail $3. 
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Before we do this, however, it might be noted that the rate of change of the 
angle between the two line elements on the interface is specified by the rate of 
change of F = v . v‘. At the initial instant, F = 0 since v and v’ are perpendicular, 
but dF dv; dv, 

at at + v; - at - v,- _ -  

(2.17) 

from (2.12). The f i s t  term on the right of this expression represents twice the 
surface shear strain rate in the v,v’ directions, CT, say. The relative angular 
velocity o of two perpendicular line elements in the entrainment interface is 
therefore 

w = -2CT+2MV. 

au, 
axj 

= ( v ~ v ;  + v;v,~) - - 2MV,  

(2.18) 

3. Curvature of the entrainment interface 
The first (or mean) curvature of the surface, the sum of the two principal 

curvatures, is given generally by 

J = H-’(EN - 2FM + GL) ,  

K = H-’(LN - M2) .  

(3-1) 

(3.2) 

and the second (or total) curvature, the product of the two principal curvatures, 
by 

Since with the definitions (2 .8 ) )  H 2  = 1 -P2, we have 

HdHldt = -FdF/dt, 

and, since P = 0 at the initial instant, v and v’ being perpendicular, dHldt = 0. 
Consequently the rate of change of first curvature is 

dJ dL dN dP - = - + - - 2 M - ,  
at at at at 

and, for the second curvature, 

dK dN dL dM 
- = L - + + - - 2 M - .  
at at at at 

(3.3) 

(3.4) 

In  the calculation of the rates of change of the curvatures of the entrainment 
interface, the following result will be used. If x and x + 1 are neighbouring points 
on the interface, then 

so 

an, 
n,(x + 1) -ni(x) = I 

d a 
-Tz,(x+l)--ni(x) = I - at at L k  @) 

dl an, 
= - v  - + I -  ’( v k z ) .  

dt k8Xk  dt 
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Now 

so that 
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L = - vi vj an,lax,, 

dL 
at 

With this form and (3.5), the use of (2.13), (2.10) and (2.4) leads to  

aUi 
( v ~ v , + v ; v ~ ) -  -2Lviv j -+(L2-M2)V axj 

ax, au I 
au . 

a 3 axj 

dL 

Similarly 

-2Nv‘ . v ’ .~+(N2- i lP )V .  dN - -  

Consequently, from (3.3) and (2.17) 

(3.6) 
dJ 
- = nIDiDiu,-2Viui+ ( L 2 + 2 M 2 + N 2 ) V ,  
at 

where the operators 

Since v and v’ are initially perpendicular, J = L + N  at this instant, and (3.6) can 
be mitten alternatively as 

dJ 
- = n,Di Diul - 2Viui + ( J 2  - 2K) V .  
at ( 3 4  

Also, since M = - v ; ( v j % ) ,  

it can similarly be shown that 

a 
-- - n v’.v - Diu,-Mr9, 
at 1 ,,ax,, 

dM 

where r9 is the rate of surface dilatation, and 

(3.9) 
dK 
- = ~ ,V:D,U, -~KB+ J K V ,  
at 

where the additional operator 

(3.10) 

These results, (3.6) and (3.9) are closely related to some given by Weatherburn 
(1927) in a study of the infinitesimal deformations of surfaces. 

At the entrainment interface, the velocity field and its derivatives experienced 
by an element of the moving surface are random functions of time, so that (3.6) 
and (3.9) can be expressed as 

dJ 
at 

dK dt = f2( t )  - 2K8(t) + J K Y .  

- = f J t )  + (J2 - 2K) V ,  
(3 .11)  
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Note that the scalar functions f l ( t )  and f 2 ( t )  are to be evaluated at each instant by 
means of the definitions (3.7) and (3.10) in co-ordinates instantaneously ortho- 
gonal, but they are independent of the orientation of the co-ordinates. In  the 
form (3.1 l), then, the equations can, in principle, be integrated to give J and K as 
functions of time for an element of the interface. Note also that even if the velocity 
field and its derivatives are stationary random functions of time, the functions fl 
and f2 are not necessarily statistically stationary, because of the factors L, M and 
N in the definitions of V, and Of.  

Although it does not seem possible to find general analytical solutions to 
(3.1 I ) ,  some qualitative information can be obtained readily. The fkst specifies 
dJldt as the sum of a randomly fluctuating quantity and a term which, from (3.6),  
is essentially positive and of order J 2 V .  Consider, then, the equation 

d J / d t  = f l ( t )  + V J 2 ,  

where V > 0. This can be re-written as 

d 
-jj(J-l) = -V- J-”fi(t). (3.12) 

Now if, for a particular element of the interface, J-l > 0 (as in a ‘valley’ between 
turbulent billows) its subsequent development is represented by a linear decrease 
superimposed on which there is a random variation whose expected amplitude 
diminishes as J-2.  Consequently, there is the expectation that within a$nite time 
interval, J-1 will vanish and the first curvature J become infinite. The smooth 
valley will develop into a sharp re-entrant wedge. Only if fl < - V J 2  will this 
progression be halted, the convective motion overcoming the tendency of the 
advancing front to develop sharp corners, though, iffl continues to varyrandomly, 
the pause can be expected to be only temporary. On the other hand, if J-l < 0 as 
on the surface of a turbulent billow, it will tend to become more negative. The 
first curvature, if negative, will decrease in absolute value but tend to remain 
negative. However, as J-1 decreases, the expected amplitude of the fluctuating 
term J-”fft) increases, and the likelihood of J changing sign iiicreases; when this 
happens, a further re-entrant wedge can develop. The characteristic geometry of 
the entrainment interface is one in which regions of predominantly negative 
curvature (billows) are separated by lines of very large positive curvature 
(wedges). As the surface evolves, new wedges can be expected to appear on the 
surface of the billows as local regions of positive curvature develop as a result of 
the turbulent motion. 
It has alreadybeen pointed out that the billows represent, on average, sources of 

surface area and the wedges sinks. On a billow, with J < 0, one would expect 
intuitively that the surface divergence 8 would generally be positive, but, even 
if the mean value of 8 over the billow vanishes, (2.16) shows that 

- 
-- d A  - - - v f  > 0. 
A dt 

The process of entrainment simply expands both the volume and the surface 
area of a billow. On the other hand, when J > 0, the surface area tends to con- 
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tract; in the limiting geometry of a wedge, surface is destroyed as the two faces 
ofthe wedge advance on each other with speed V .  Reference to figure 2 shows that 

6r 1 -- 
V6t - -siny 

where a is the semi-angle of the wedge. Consequently, i fa  is a function of distance 
s along the apex of the wedge, the rate of loss of area 

(3.13) 

FIGURE 1. The advance of a re-entrant wedge. 

If 2 represents the total length of the wedge lines in a large area A of the entrain- 
ment interface, then 

and 

g)w = - 2 VLF cosec 201, 

(z), = - 2 vr cosec 201, 

where I' is the average length of wedge lines per unit area of the interface. If the 
geometry of the entrainment interface is statistically stationary (though in real 
turbulent flows there seems no reason to suppose this to be generally true), this 
mean rate of destruction of area per unit surface area by the wedges would be 
balanced by the mean rate of generation in the bulges, given by (2.16) averaged 
over the surface area of these regions. 

4. An Eulerian description 
The turbulent interface can be represented by the surface x = <(x, y, t ) ,  every 

element of which is advancing normal to itself with speed V while the whole is 
being convected and convoluted by the larger-scale components of the turbulent 
flow. For the sake of definiteness, the mean position of the entrainment interface 
can be taken as parallel to the x, y plane. The surface z = g is likely to be con- 
tinuous, but it may contain discontinuities in gradient along the lines in the 
surface, and it may be multiply valued over domains in (z, y, t )  where a billow has 
moved above a region in irrotational motion. The surface is convoluted by the 
large-scale motion and the rate of change of < is given by 

a< - at = ws+ V(n. p), (4.1) 
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where ws is the component of the fluid velocity in the z direction at the instanta- 
neous position of the interface, n is the unit normal to the surface and p. a unit 
vector in the z direction. This equation can be written equivalently as 

(4.2) 

where uc represents the vector component of the fluid velocity in the x, y plane 
at  the position (x, y, 5). The positive root is to be taken when n. p. > 0, and the 
negative root when n. p. < 0, i.e., beneath the ‘overhang’ when 5 is multiply 
valued. 

< + us . vg = ws + V[l + (Vt;)Z]+, 

V _- -c-- - , 

FIGURE 2. Specification of the entrainment interface. 

The general problem might be posed as follows. Given an initial configuration 
g(x, y, to) of the entrainment interface and a random large-scale velocity field 
q = (u, w) = q(x, y, z, t ) ,  irrotational on one side of the interface and vortical on 
the other, find from (4.2) the subsequent development of g in space and time. 
The analytical dificulty arises from the fact that the velocity field of interest in 
(4.2) is specified at  the position of the interface which is unknown apriori, and 
this obstructs the finding of explicit solutions except in some very simple (though 
revealing) cases. Clearly, numerical experiments could be conducted using a 
digital computer with step-by-step integrations in time, but this is not within the 
scope of the present work. 

In addition to the rate at which the interface moves in the x direction, we are 
also interested in the rate a t  which it moves in the x direction, a quantity called 
the ‘convection velocity’ u, by Kovasznay (1970). The surface can be specified 
equivalently by the multiply valued function x = t(y, z, t )  so that 

(4.3) 
a5 - = uc+ v p  + (V[)2]~, 
at 

where 05 = (a t /@, ac/az). An equivalent sign convention holds for the square 
root; if A is a unit vector in the x direction, the root is taken positive when A .  n > 0 
and negative when A .  n < 0. Thus, 

where us, us and wc are the velocity components in the x, y and z directions at  the 
instantaneous position of the interface. 
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Some simple geometry enables us to express u, in terms of g ( x ,  y, t ) .  Holding y 
fixed for small disp1acements"dz = d< and dx = dc, 

agdz  = (ag laxy .  
Also, when z is fixed, a small variation along {(x, y) = constant gives 

so that 

With these expressions and (4.4), we have 

(- -P n 
FIGURE 3. The passage of a streamline through the interface. 

where the positive rooti is to be taken. A check on these expressions can be made by 
substitution of the left-hand side of (4.2) into (4.51, which leads to the identity 

Similar expressions can, of course, be found for the motion of the interface in the 
y direction. 

An alternative way of describing the entrainment interface is useful in examples 
(admittedly artificial ones) in which there exists a frame of reference in which 
both the flow field and the entrainment interface are steady in time. In  such a 
frame, the streamlines and particle paths coincide; the normal component of the 
fluid velocity across the interface balances the entrainment speed V .  If qs is the 
speed of the fluid crossing the interface and y the angle between the streamline 
and the interfacial surface then, as shown in figure 3, 

siny = V'/qs. 

Thus, qs sin y = V ,  a constant along the interface. 

(4.7) 

5. Some simple examples 
Although the general problem of finding [ (x ,  y,t) from (4.2) is peculiarly 

intractable, some valuable insight into the general characteristics of the entrain- 
ment interface can be gained by examining the properties of some simple cases. 
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We shall be interested not so much in the detailed form of the solutions but in 
such quantities as the overall speed of advance, the surface curvature and the 
conditions under which there appear discontinuities in surface slope. The analy- 
tical difficulties are reduced considerably when the large-scale velocity field q at 
the interface is independent of the location c of the interface. 

5.1. The caSe u = 0, w = Wf(x) .  

In  this case, the large-scale velocity field is two-dimensional, normal to the 
interface and steady in time. The maximum value of the velocity is taken as W ,  
so tliatf(x) < 1. Solutions of the form 5 = c(x, t )  exist, where from (4.2) 

ct = W f ( x )  + V[l + L-34. (5.1) 

Note that iff(x)attains its maximum value of unity at  isolated points, then in the 
vicinity of such a point, x = x,, say, f(x) is an even function of (x -xo). Conse- 
quently, 6 is also an even function of (x - xo): the maximum in the interfacial 
configuration coincides with the maximum velocity in the z direction. At this 
point, cz = 0 and the speed of advance 

c&O) = W +  V ,  
the sum of the convection velocity and the entrainment speed V .  

If  the turbulent interface is initially plane and the functionf is, say, periodic in 
x, the interface advances steadily with speed W + V at the points x = xo of 
maximum w and at other points recedes relative to this. We can therefore let 

c =  ( W + V ) t + @ ( x , t ) ,  
and, from (5.1), = - W (  1 -f) + V[(  1 f a);)* - 11. 

Initially, CDt = - W( 1 - f )  < 0 a t  all points save x = so, and the surface develops 
slope. Consequently, the magnitude of the last term in (5.3) increases steadily 
and CD, decreases. Ultimately CD, = 0 when 

V [ (  1 + @:)4 - 11 = W (  1 - f ) ,  (5.4) 

and a steady configuration of the advancing interface is attained. With a pre- 
scribed distribution f(x), the asymptotic shape of the surface is given by the 
solution of the differential equation 

W2 2w 
CD; = p ( l - f ) 2 + 7 ( 1 - f )  (5 .5 )  

subject to the conditions @(xo) = 0 and CD.,,(O) < 0 since 6 has alocal maximum a t  
this point. 

Alternatively, the angle of slope of the interfacial surface can be determined 
immediately. If CD., = tan/3(x) then from (5.4), 

V(secp- 1) = W(1 -f), 

or p ( x )  = see-1 G 1 + - [I - f ( x ) l ) ,  (5.6) 

the negative value being taken when x > 0 and vice versa. 
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For example, iff(x) = coskx then, from (5.5), 

@; = 4r2 sin4 ikx + 4I’ sin2 ikx, 
where F = W/V, and 

@(x) = - (rk-1) sin u(sin2 ZL + I’-l)+du, s,””’ (5.7) 

when - n < ikx < n-. The shapes of the entrainment interface are illustrated in 
figure 4 for various values of r, and, as expected, are characterized by re-entrant 
wedges whose semi-angle can be found either from (5.5) or (4.7): 

The greater the value of I?, the deeper the wedges and the sharper the re-entrant 
angles. The curvature of the bulges is negative everywhere, except for the dis- 
continuities. 

FIGURE 4. The configuration of the interface for a non-propagating sinusoidal disturbance. 
The unbroken line indicates the shape when r = W/V = 1 ; the broken line when = 2.  
Vertical distortion 0.5. 

Consider now the behaviour of a small perturbation to a steady solution of 
(5.3). Let @ = D0(x) + #(x, t ) ,  where O0(z) satisfies (5.4). By substitution into 
(5.3) it can be shown simply that 

where ,13 is the undisturbed angle of surface slope, so that 

- a< 
as 

-- 

in the undisturbed state, ds being an element of length along the surface. Equation 
(5.8) indicates clearly that small disturbances to the surface propagate along it, 
the component of the propagation velocity in the x direction being - VsinP(z). 
Disturbances in the vicinity of a maximum in 6 will move away from the maxi- 
mum, towards either the next smooth minimum in <or the next re-entrant corner. 
If a corner is encountered, such as those illustrated in figure 4 where sin P changes 
sign discontinuously, the disturbance reaches the corner with finite velocity and 
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is consumed there. The surface recovers its original configuration,? and, in this 
sense, solutions with alternating smooth maxima and sharp minima can be said 
to be stable. 

Solutions to (5.5) do, of course, exist with smooth minima in @, e.g. (5.7) 
defined over all x. Such solutions are excluded by the initial condition that 
G?(x,O) = 0, and moreover they are unstable. Small disturbances approach a 
smooth minimum with a velocity that decreases to zero a t  the minimum. They 
therefore accumulate in this region with ever-increasing slope, and the surface 
never returns to its original configuration. 

5.2. The case u = - U (a constant), w = Wf(x). 

This represents a normal velocity field moving with speed U along the surface. 
As before, we defbe W to be the maximum value of w, so that f < 1. Let 

6 =;wt+ @(x,t), 

W + @, - U@% = Wf(x) + V[l + @;I+. 
where W is the speed of advance of the front as a whole. Prom (4.2), 

(5.9) 
The speed W cannot now be specified immediately, as in the previous example, 

since the maxima in [and w do not in general coincide. Indeed, the determination 
of W is the principal aim of the present analysis. If [ has a maximum at the point 
xo, so that @%(x0) = 0, then, in a steady configuration, (5.9) indicates that 

W = Wf(x,)+V < w+v. 
Also, iff (and @,) are either integrable over the whole x domain or periodic with 
zero mean, then the average of (5.9) gives 

w = V[1+@34 2 v, 
equality holding only when f is integrable. Consequently, 

w + v > w 2  v, (5.10) 

but within this range W remains to be determined by the solution. 
The behaviour of small perturbations to a steady solution of (5.9) can be found 

asbefore by letting @ = Qo(x) + #(x, t ) ,  where Q0(x) satisfies (5.9). Thedisturbance 
4 satisfies the equation, - 

a4 a4 
- - (U+ at VsinP(x))- ax = 0,  (5.11) 

and so propagates in the x direction with velocity - (V + V sin P). A local dis- 
turbance in some neighbourhood will therefore move along the surface, leaving 
its configuration ultimately unchanged if this quantity does not vanish at  any 
point, and so remains of the same sign. Taking U > 0, a suficient condition for the 
existence of a steady solution with continuous derivatives is then that 

u > v. (5.12) 

7 Note that, if $ is differentiable and non-zero at the maximum of c, the whole front 
will advance an amount equal to the value of $ at that point, but the shape will remain 
unchanged. 
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The most interesting situations, however, are those in which U + V sin/? does 
change sign. If this quantity becomes negative a t  one point, and if the slope is 
continuous, it must become positive again at  at  least one other point, since the 
average value of p along the surface vanishes. A point where U + V sin p becomes 
negative as x increases is such that disturbances propagate away from this point; 
it will be called a leading point on the surface. A point where Ii + V sin p becomes 
positive is a point of accumulation of small disturbances; such a point is unstable 
in the sense described above, and the slope tends to become discontinuous. We 
would therefore anticipate that the configuration of the entrainment interface in 
these cases will involve one or more leading points, separated by discontinuities, 
where U + V sin p ( x )  abruptly changes sign from negative to positive. A necessary 
condition for this type of configuration is clearly that V 3 Ti; it will later be 
shown to be sufficient. 

This behaviour can be shown more explicitly by rewriting (5.9) in terms of the 
angle of slope p(x). I n  the steady state, since = tanp(x), we have 

W -  U tan/? = Wf + V secp, (5.13) 

and on differentiation with respect to x, there results 

dp Wf'fx) coszp -- _ -  
dx U + V s i n p '  

(5.14) 

If U + Vsinp(x) > 0 everywhere, the coefficient of f'(x) is everywhere finite 
and negative. The points of greatest negative and positive slope now coincide 
with the maxima and minima in the distribution of the normal velocity field. 
At a leading point, however, the denominator vanishes, and, since the slope must 
be continuous at this point, f '  = 0 also. Consequently, at; the leading point., 

dp - - Wf"(x) cos2p -- 
dx V cosP(dp/dx) ' 

so that (g)2 = -;f"(x)cosp. (5.15) 

Since cosp > 0, f(x) must have its maximum value (of unity) at a leading point. 
Note, however, that a leading point does not generally coincide with a maximum 
of 5 (the crest of a billow). 

The existence of a leading point enables us to find the entrainment speed W in 
a simple manner. From (5.13), 

U sinp(x) + V w- Wf(x) = 
COSP(X) ' 

and, if the point x = x1 is a leading point, sinp = - UjV, so that 

since f(xJ = 1. Thus, 
sin/?(x,) - U ( W  - W) 

tan/?(x,) = 
cOSp(X1) - u2- 8 2  . (5.16) 
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Also, from (5.9), with (I)t = 0, 

w - Wf(x)  - U@, = V[l + 034, 

(U2 - V 2 ) q  - 2U(W - Wf)@, + (W - Wf)2 - V2 = 0, 

(5.17) 

(5.18) so that 

and, if U 2 -  V2  + 0, 

( U2 - V2) (I), = U (  w - W f )  f V{ U2 - V2 + (w - Wf)”. (5.19) 

Comparison of this expression with (5.16) indicates that, at aleading point, where 
f = 1, the radical vanishes. Thus, 

U 2 - V 2 + ( W - W ) 2 = 0  

and w = W + ( V 2 -  U2)Q. (5.20) 

The surface slope at  the leading point is found immediately from (5.16) and (5.20) 
to be 

tanP(x,) = (5.21) 

which is, rather surprisingly, independent of Wf (x). Note that, if the leading point 
is to exist it is necessary that V 2 U .  As U + 8-, the negative slope at  the leading 
point becomes indefinitely large, thevelocity of advance V of the vertical element 
of front just balancing the convective velocity - U .  Note also that, when V 2 U ,  
(5.19) and (5.20) show that f = 1 necessarily corresponds to a leading point. 
Therefore, the condition V > U is necessary and sufficient for the existence of 
leading points (and discontinuities in slope); the condition U > V is necessary 
and sufficient for regular solutions. 

At a leading point, (5.15) shows that the curvature of the surface is finite and 
non-zero. Consequently, QX is locally an odd function about its value (5.21) at the 
point, so that the sign of the radical in the solution (5.19) changes as we pass 
through this point, and the value of the radical vanishes. From (5.17), when 

= 0, %‘- - Wf = 8, so that the negative sign in the solution is required to the 
left of the leading point and the positive sign between the leading point and 
the next discontinuity in slope. When U > V ,  there are no leading points, the 
negative sign being required throughout. 

For any particular distribution f ,  the surface configuration can be found when 
V > U by integrating in both directions away from the leading point, using the 
initial slope (5.21). Iff is periodic, the solutions will ultimately intersect the curve 
associated with the neighbouring cycle and discontinuities in slope appear as in 
the previous example with U = 0. Some representative shapes are shown in 
figure 5. 

Equation (5.20), specifying the overall speed of advance when U < V ,  is the 
primary result of this section. When U > V ,  there are no leading points, and this 
method cannot be used. The solutions to (5.19) are, however, continuous, and 
they can be integrated over the entire range: 

-U 
( V2 - U2)P 

( U 2 -  V2)(I)(x) = U (9- Wf}dx-  V { U 2 -  V2+(W- Wf)’}&dx, (5.22) 

F L M  5 1  
8 s’ s” 



114 0. M .  Phillips 

to an arbitrary additive constant. In  this expression, W is still t o  be determined. 
Iff is a spatially periodic function, such that f (2) = f (x  + 2n), and with zero mean 
(so that there is no net outflow in the z direction), then @ is similarly periodic, and 

2nuw = v/oz’{ne- v2+ (W- Wf)”*dX, (5.23) 

an implicit relation for W as a function of U ,  Y ,  W and the distribution f (x ) .  The 
finding of an explicit expression for W is in general rather difficult, but, for 
rapidly travelling disturbances such that U 9 V ,  W ,  it can be shown that 

where 
slightly larger than the entrainment velocity, and much less than W .  

is the average value off over a cycle. The velocity of advance is only 

U 
4- 

U = y  

, Leading point A 

FIGURE 5. Interfacial configurations for a disturbance moving with velocity relative to the 
fluid at  the interface, V /  W = 1. The leading point occurs at  the point of maximum outflow, 
and does not coincide with the crest of the billow, unless U = 0 (figure 4). No vertical 
distortion. 

Another simple, though very artificial, example is provided when f ( x )  is a 
square wave : 1 ( O < x < n )  

- 1  (7r < x < 27r). 
f ( 4  = { 

It is then found simply from (5.23) that 

2+ W2)k W = - - ( U  V 
U (5.24) 

The distribution is not, of course, differentiable, so that the previous discussion of 
leading points does not apply directly, but nevertheless it is interesting to note 
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that, as U -+ V ,  W-+ ( U2 + W2) t  E W when V < W .  The speed of advance W of 
the front is comparable with W only when U - V .  

A further example of interest is when f ( x )  is integrable so that necessarily 
f ( x )  -f 0 as x - f  rt 00. The normal velocity disturbance is limited to a local region 
near the origin, while far away the entrainment interface will be supposed flat 
and therefore advancing with speed V in the x direction. The overall entrainment 
velocity is then simply V ,  but the interface experiences a net advance as a result 
of the movement of the disturbance field along it. From (5.22), the net advance 
when U > V is 

6 = @( -00) - @(a) 

= (U2-B2) - l ( jm [ V { U 2 - V 2 + ( V - W f ) 2 } i - u ( V - W f ) ] d x  
--m 

5.3. T h e  case u. = - U ,  w = Wf(x, y) 

This situation represents a normal velocity field varying in both x and y ,  and 
moving along the surface with speed U relative to the fluid outside. The configura- 
tion of the advancing interface is specified by the equation 

W + a+ - UQ, = Wf (x, y) + V [  1 + @: + @;I+. (5.26) 

Although it is not easy to find analytical solutions to this nonlinear partial 
differential equation, the concept of leading points when U < V will be found to 
generalize immediately and enables us to find the overall speed of advance W .  

As before suppose that Y ( x ,  y) represents a steady-state solution to (5.26)) and 
consider the behaviour of a small perturbation. If @ = Y(x, y) + #(x, y ,  t ) ,  then, 
for infinitesimal disturbances, it is found that 

The propagation velocity of small disturbances vanishes when 

I Yv = 0) 

U +  TrYz[l +Y:]-H = U +  Vsinp = 0, 
(5.28) 

where p is the angle of slope of the section in the x, z plane. The first of these 
equations indicates that, locally, the surface is normal to the x,z plane; if 
Y,,, Yvv < 0, small disturbances propagate in all directions away f r o m  such 
points, and they are therefore stable leading points in the sense described before. 
The previous analysis of this region applied unchanged, and the speed of advance 
is given as in (5.20) by W = W + ( V 2  - u2)4. The projection of the entrainment 
interface on the x, y plane defines a generally irregular mosaic of closed domains, 
each containing a leading point and bounded by the lines that are the projections 
of re-entrant wedges in the surface. 

When U > V ,  the leading points disappear, and, as before, the entrainment 
rate W can be expected to decrease rapidly below the value W when U = V until 
asymptotically, when U / V  1, W-+ V )  the surface convolutions being levelled 
out. 

8-2 
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6. General conclusions 
The models described in the previous sections are of course rather artificial, 

but perhaps not to the extent that we cannot draw valuable conclusions from 
them. The velocity field in the x direction at the interface was supposed indepen- 
dent of time and (in 3 5.3) an arbitrary function of 17: and y. I n  a real turbulent flow, 
the structure of the large-scale eddies is, of course, not independent of time, 
though (as the experiments of Favre, Gaviglio & Dumas 1957, 1958, 1967 
indicate) the time scale of their evolution is surprisingly large. Also, in these 
simple solutions, the u and v fluctuations in the velocity field a t  the interface are 
neglected, together with variation of the mean velocity with z ;  these can be 
expected to distort the interfacial shapes somewhat, without, however, con- 
tributing greatly to the overall process of entrainment. Consequently, it seems not 
a t  all unreasonable to compare the predictions of the analysis with the experi- 
mental results of Kovasznay et al. (1970) in at least a semi-quantitative way. 

One of their noteworthy findings was that, in the outer part of a boundary 
layer, the turbulent billows move rather more slowly than the outside stream. 
Making observations a t  a fixed point, they found that the convection velocity 
(in the x direction) of the interface at  the ‘front’ of a billow as it travelled past 
was rather greater than that at  the ‘back’, because of the expansion and outwards 
movement of the billow. Both, however, were less than U,; the average of these 
two convection velocities, which we can take as the propagation speed of the 
billow was about 0*94U,, when the intermittency factor y = 0.5 decreasing to 
0.92U, at points deeper in the boundary layer, where y - 0.9. The propagation 
speed of the large billows relative to the outside fluid was then about 0.06U,, or, 
in terms of the friction velocity ug, about 1.3 u*. Now, according to the theory, 
only those disturbances propagating a t  speeds less than V relative to the outside 
fluid are capable of producing large convolutions of the surface. It follows 
immediately that for this turbulent boundary layer, V is greater than 1.3 u*. 

A closer estimate can be obtained from the measurements of the average normal 
(w) velocity component at  different points of the interface (Kovasznay et al. 
1970, figure 9). Over the ‘fronts’ of the billows, the average velocity was found 
to be negative for all positions of the interface, indicating a mean motion towards 
the wall. On the ‘backs’ the mean velocity was positive or outwards when the 
intermittency factor y was less than 0.6 (i.e. towards the top of the billows), but 
negative when y > 0.6, in the valleys. It is interesting to consider the results of 
figure 5 in the light of these findings. I n  this figure, the left-hand portion of the 
billow corresponds to ‘fronts’ and the right-hand portion to the ‘backs’ of 
Kovasznay et al.; the distribution of normal velocity relative to the billow shape 
is very similar to that calculated when the convection velocity U = gV. In  this 
case, the leading point, where the outwards velocity is greatest, is on the rear 
side of the billow and the region of outwards velocity extends from just ahead of 
the crest to a point on the back of the billow well in the valley, where in fact 
y - 0.75. Over virtually all of the front face, as well as on the back face, when 
y > 0.75, the w velocity component is negative. This behaviour is very similar 
to that observed in the experiments and contrasts with the situation when 
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U = V ,  when the normal velocity is outwards on the whole of the back face and 
inwards on the front face, and when U = J#V and the outwards velocity region 
includes the valley and some of the front face. When U = 0 (as in figure 4)) the 
outwards velocity and surface shape are symmetrically disposed, in clear conflict 
with the experimental results. This comparison suggests quite strongly that, in 
the turbulent boundary layer, the convection velocity (1*3u,) is close to +V, or 
that the entrainment speed is approximately 2*6u,. 

This figure is surprisingly large, especially when expressed in terms of the 
Kolmogorov velocity u,. Townsend’s (1956) results indicate that near the outer 
edge of a boundary layer, the energy dissipation rate E,, N u;/a, so that 

u, ( E o V ) f  u % v t 
u* - -N u* 
_ -  (<) (m) * 

In the experiments of Kovasznay et al., u*/Um = 0.045 and U,S/v = 27500, so 
that u,/u* = 0.17, approximately. Consequently, in these experiments V N 15 uv. 
Corrsin & Kistler’s argument (described in $1) would lead us to expect that 
V cc u,,, but the numerical coefficient 15 is considerably larger than the ‘order 
unity’ value usually expected (and found!) in reasoning based on the theory of 
local similarity. 

However, it must be remembered that, although the description of this theory 
has been couched in terms of disturbances with length scales large compared with 
the Kolmogorov scale in the turbulence, the kinematics involved are the same 
for the whole range of disturbances from the largest scale to those only slightly 
larger than the thickness of the interface. If viewed on a small scale, the entrain- 
ment interface will have micro-convolutions as a result of the continuous dis- 
tribution of scales deforming it, and whether or not these are detected separately 
or seen only as a ‘blurring ’ of the interface depends on the response of the detect- 
ing system. Indeed, the ‘ thickness’ of the entrainment interface itself depends on 
this response, provided that it is larger than the Kolmogorov microscale, and the 
entrainment speed V ,  augmented by micro-convolutions in the same way that 
the overall speed of advance is increased by large-scale convolutions, is corre- 
spondingly numerically larger than u,. The statistical geometry of the interface is, 
of course, extremely nonlinear and the contributions from different ranges of 
eddies cannot be superimposed. The speed of advance of a given element of the 
interface on a billow, when viewed on a large scale, depends essentially on the 
maximum normal velocity found in the element, or in a neighbouring one from 
which disturbances can propagate. 

Turbulent entrainment is an extremely important process in both meteorology 
and oceanography. In  these contexts, the entrainment interface is frequently 
accompanied by a density jump whose influence on the large-scale motion will 
modify the entrainment process. For example, at  the top of the mixed layer in the 
atmosphere, or at the bottom of it in the ocean, the density jump is stable, and 
the larger-scale disturbances will tend to propagate as internal gravity waves. 
While the local entrainment speed V may be only slightly reduced, the speed of 
propagation of the larger disturbances may well considerably exceed V ,  so that the 
billowing characteristic of wind-tunnel turbulence disappears, and the overall 
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speed of advance of the turbulent front is reduced substantially. The quantitative 
discussion of these matters is, however, beyond the scope of the present paper. 
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